Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Neuroimage Clin ; 42: 103595, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38555806

ABSTRACT

BACKGROUND: The effects of low-moderate prenatal alcohol exposure (PAE) on brain development have been infrequently studied. AIM: To compare cortical and white matter structure between children aged 6 to 8 years with low-moderate PAE in trimester 1 only, low-moderate PAE throughout gestation, or no PAE. METHODS: Women reported quantity and frequency of alcohol consumption before and during pregnancy. Magnetic resonance imaging was undertaken for 143 children aged 6 to 8 years with PAE during trimester 1 only (n = 44), PAE throughout gestation (n = 58), and no PAE (n = 41). T1-weighted images were processed using FreeSurfer, obtaining brain volume, area, and thickness of 34 cortical regions per hemisphere. Fibre density (FD), fibre cross-section (FC) and fibre density and cross-section (FDC) metrics were computed for diffusion images. Brain measures were compared between PAE groups adjusted for age and sex, then additionally for intracranial volume. RESULTS: After adjustments, the right caudal anterior cingulate cortex volume (pFDR = 0.045) and area (pFDR = 0.008), and right cingulum tract cross-sectional area (pFWE < 0.05) were smaller in children exposed to alcohol throughout gestation compared with no PAE. CONCLUSION: This study reports a relationship between low-moderate PAE throughout gestation and cingulate cortex and cingulum tract alterations, suggesting a teratogenic vulnerability. Further investigation is warranted.

2.
Hum Brain Mapp ; 45(4): e26618, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38414286

ABSTRACT

BACKGROUND: Age-related cognitive decline is linked to changes in the brain, particularly the deterioration of white matter (WM) microstructure that accelerates after the age of 60. WM deterioration is associated with mild cognitive impairment and dementia, but the origin and role of white matter signal abnormalities (WMSA) seen in standard MRI remain debated due to their heterogeneity. This study explores the potential of single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), a novel technique that models diffusion data in terms of gray matter (TG ), white matter (Tw ), and cerebrospinal fluid (TC ), to differentiate WMSA from normal-appearing white matter and better understand the interplay between changes in WM microstructure and decline in cognition. METHODS: A total of 189 individuals from the GENIC cohort were included. MRI data, including T1-weighted and diffusion images, were obtained. Preprocessing steps were performed on the diffusion MRI data, followed by the SS3T-CSD. WMSA were segmented using FreeSurfer. Statistical analyses were conducted to assess the association between age, WMSA volume, 3-tissue signal fractions (Tw , TG , and TC ), and neuropsychological variables. RESULTS: Participants above 60 years old showed worse cognitive performance and processing speed compared to those below 60 (p < .001). Age was negatively associated with Tw in normal-appearing white matter (p < .001) and positively associated with TG in both WMSA (p < .01) and normal-appearing white matter (p < .001). Age was also significantly associated with WMSA volume (p < .001). Higher processing speed was associated with lower Tw and higher TG , in normal-appearing white matter (p < .01 and p < .001, respectively), as well as increased WMSA volume (p < .001). Similarly, lower MMSE scores correlated with lower Tw and higher TG in normal-appearing white matter (p < .05). High cholesterol and hypertension were associated with higher WMSA volume (p < .05). CONCLUSION: The microstructural heterogeneity within normal-appearing white matter and WMSA is associated with increasing age and cognitive variation, in cognitively unimpaired individuals. Furthermore, the 3-tissue signal fractions are more specific to potential white matter alterations than conventional MRI measures such as WMSA volume. These findings also support the view that the WMSA volumes may be more influenced by vascular risk factors than the 3-tissue metrics. Finally, the 3-tissue metrics were able to capture associations with cognitive tests and therefore capable of capturing subtle pathological changes in the brain in individuals who are still within the normal range of cognitive performance.


Subject(s)
White Matter , Humans , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , Aging/pathology , Cognition , Magnetic Resonance Imaging
3.
Brain ; 147(4): 1526-1538, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37816305

ABSTRACT

Early life experiences can exert a significant influence on cortical and cognitive development. Very preterm birth exposes infants to several adverse environmental factors during hospital admission, which affect cortical architecture. However, the subsequent consequence of very preterm birth on cortical growth from infancy to adolescence has never been defined; despite knowledge of critical periods during childhood for establishment of cortical networks. Our aims were to: chart typical longitudinal cortical development and sex differences in cortical development from birth to adolescence in healthy term-born children; estimate differences in cortical development between children born at term and very preterm; and estimate differences in cortical development between children with normal and impaired cognition in adolescence. This longitudinal cohort study included children born at term (≥37 weeks' gestation) and very preterm (<30 weeks' gestation) with MRI scans at ages 0, 7 and 13 years (n = 66 term-born participants comprising 34 with one scan, 18 with two scans and 14 with three scans; n = 201 very preterm participants comprising 56 with one scan, 88 with two scans and 57 with three scans). Cognitive assessments were performed at age 13 years. Cortical surface reconstruction and parcellation were performed with state-of-the-art, equivalent MRI analysis pipelines for all time points, resulting in longitudinal cortical volume, surface area and thickness measurements for 62 cortical regions. Developmental trajectories for each region were modelled in term-born children, contrasted between children born at term and very preterm, and contrasted between all children with normal and impaired cognition. In typically developing term-born children, we documented anticipated patterns of rapidly increasing cortical volume, area and thickness in early childhood, followed by more subtle changes in later childhood, with smaller cortical size in females than males. In contrast, children born very preterm exhibited increasingly reduced cortical volumes, relative to term-born children, particularly during ages 0-7 years in temporal cortical regions. This reduction in cortical volume in children born very preterm was largely driven by increasingly reduced cortical thickness rather than area. This resulted in amplified cortical volume and thickness reductions by age 13 years in individuals born very preterm. Alterations in cortical thickness development were found in children with impaired language and memory. This study shows that the neurobiological impact of very preterm birth on cortical growth is amplified from infancy to adolescence. These data further inform the long-lasting impact on cortical development from very preterm birth, providing broader insights into neurodevelopmental consequences of early life experiences.


Subject(s)
Premature Birth , Infant , Child , Infant, Newborn , Humans , Male , Child, Preschool , Female , Adolescent , Longitudinal Studies , Cognition , Gestational Age , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
4.
Neurobiol Aging ; 130: 22-29, 2023 10.
Article in English | MEDLINE | ID: mdl-37423114

ABSTRACT

Diffusion magnetic resonance imaging studies often investigate white matter (WM) microstructural degeneration in aging by probing WM regions that exhibit negative age associations of fractional anisotropy (FA). However, WM regions in which FA is unassociated with age are not necessarily "spared" in aging. Besides the confound of inter-participant heterogeneity, FA conflates all intravoxel fiber populations and does not allow the detection of individual fiber-specific age associations. In this study of 541 healthy adults aged 36-100 years, we use fixel-based analysis to investigate age associations among each "fixel" within a voxel, representing individual fiber populations. We find age associations of fixel-based measures that indicate age-related differences in individual fiber populations amid complex fiber architectures. Different crossing fiber populations exhibit different slopes of age associations. Our findings may provide evidence of selective degeneration of intravoxel WM fibers in aging, which does not necessarily manifest as a change in FA and therefore escapes notice if conventional voxel-based analyses are relied upon alone.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Aging , Anisotropy , Brain/diagnostic imaging
5.
iScience ; 26(6): 106794, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37255665

ABSTRACT

Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.

6.
J Autism Dev Disord ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37079181

ABSTRACT

Fixel-based analysis was used to probe age-related changes in white matter micro- and macrostructure of the corpus callosum between participants with (N = 54) and without (N = 50) autism spectrum disorder (ASD). Data were obtained from the Autism Brain Imaging Data Exchange-II (ABIDE-II). Compared to age-matched controls, young adolescents with ASD (11.19 ± 7.54 years) showed reduced macroscopic fiber cross-section (logFC) and combined fiber-density and cross-section (FDC). Reduced fiber-density (FD) and FDC was noted in a marginally older (13.87 ± 3.15 years) ASD cohort. Among the oldest ASD cohort (17.07 ± 3.56 years), a non-significant trend indicative of reduced FD was noted. White matter aberration appears greatest and most widespread among younger ASD cohorts. This supports the suggestion that some early neuropathophysiological indicators in ASD may dissipate with age.

7.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1797-1812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37012463

ABSTRACT

Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , White Matter , Humans , Schizophrenia/drug therapy , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , White Matter/diagnostic imaging , White Matter/pathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Diffusion Magnetic Resonance Imaging/methods , Psychotic Disorders/drug therapy , Brain/pathology
8.
Neurology ; 100(16): e1664-e1672, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36792378

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral white matter health can be estimated by MRI-derived indices of microstructure. White matter dysfunction is increasingly recognized as a contributor to neurodegenerative disorders affecting cognition and to functional outcomes after stroke. Reduced indices of white matter microstructure have been demonstrated cross-sectionally in stroke survivors compared with stroke-free participants, but longitudinal changes in the structure of white matter after stroke remain largely unexplored. We aimed to characterize white matter micro- and macrostructure over 3 years after stroke and study associations with white matter metrics and cognitive functions. METHODS: Patients with first-ever or recurrent ischemic stroke of any etiology in any vascular territory were compared with stroke-free age- and sex-matched controls. Those diagnosed with hemorrhagic stroke, TIA, venous infarction, or significant medical comorbidities, psychiatric and neurodegenerative disorders, substance abuse, or history of dementia were excluded. Diffusion-weighted MRI data at 3, 12, and 36 months were analyzed using a longitudinal fixel-based analysis, sensitive to fiber tract-specific differences within a voxel. It was used to examine whole-brain white matter degeneration in stroke compared with control participants. We studied microstructural differences in fiber density and macrostructural changes in fiber-bundle cross-section, in relation to cognitive performance. Analyses were performed controlling for age, intracranial volume, and education (family-wise error-corrected p < 0.05, nonparametric testing over 5,000 permutations). RESULTS: We included 71 participants with stroke (age 66 ± 12 years, 22 women) and 36 controls (age 69 ± 5 years, 13 women). We observed extensive white matter structural degeneration across the whole brain, particularly affecting the thalamic, cerebellar, striatal, and superior longitudinal tracts and corpus callosum. Importantly, follow-up regression analyses in 72 predefined tracts showed that the decline in fiber density and cross-section from 3 months to 3 years was associated with worse cognitive performance at 3 years after stroke, especially affecting visuospatial processing, processing speed, language, and recognition memory. DISCUSSION: We conclude that white matter neurodegeneration in ipsi- and contralesional thalamic, striatal, and cerebellar tracts continues to be greater in stroke survivors compared with stroke-free controls. White matter degeneration persists even years after stroke and is associated with poststroke cognitive impairment. TRIAL REGISTRATION INFORMATION: ClinicalTrails.gov NCT02205424.


Subject(s)
Neurodegenerative Diseases , Stroke , White Matter , Humans , Female , Middle Aged , Aged , White Matter/diagnostic imaging , Stroke/complications , Stroke/diagnostic imaging , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging
9.
Neurosci Biobehav Rev ; 147: 105082, 2023 04.
Article in English | MEDLINE | ID: mdl-36775083

ABSTRACT

Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.


Subject(s)
Premature Birth , Adult , Female , Infant, Newborn , Humans , Infant, Extremely Premature/psychology , Longitudinal Studies , Brain/diagnostic imaging , Infant, Very Low Birth Weight/psychology
10.
Biol Psychiatry ; 93(6): 575-585, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36481064

ABSTRACT

BACKGROUND: Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS: Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS: At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS: Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.


Subject(s)
Problem Behavior , White Matter , Infant, Newborn , Infant , Humans , Child , Adolescent , White Matter/diagnostic imaging , White Matter/pathology , Infant, Extremely Premature , Diffusion Magnetic Resonance Imaging/methods , Risk Factors
11.
J Pers Med ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556244

ABSTRACT

Infants born very preterm (VPT; ≤29 weeks of gestation) are at high risk of developmental disabilities and abnormalities in neural white matter characteristics. Early physical therapy interventions such as Supporting Play Exploration and Early Development Intervention (SPEEDI2) are associated with improvements in developmental outcomes. Six VPT infants were enrolled in a randomised clinical trial of SPEEDI2 during the transition from the neonatal intensive care unit to home over four time points. Magnetic resonance imaging scans and fixel-based analysis were performed, and fibre density (FD), fibre cross-section (FC), and fibre density and cross-section values (FDC) were computed. Changes in white matter microstructure and macrostructure were positively correlated with cognitive, motor, and motor-based problem solving over time on developmental assessments. In all infants, the greatest increase in FD, FC, and FDC occurred between Visit 1 and 2 (mean chronological age: 2.68-6.22 months), suggesting that this is a potential window of time to optimally support adaptive development. Results warrant further studies with larger groups to formally compare the impact of intervention and disparity on neurodevelopmental outcomes in infants born VPT.

12.
Sci Data ; 9(1): 676, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335218

ABSTRACT

We present a dataset of magnetic resonance imaging (MRI) data (T1, diffusion, BOLD) acquired in 25 brain tumor patients before the tumor resection surgery, and six months after the surgery, together with the tumor masks, and in 11 controls (recruited among the patients' caregivers). The dataset also contains behavioral and emotional scores obtained with standardized questionnaires. To simulate personalized computational models of the brain, we also provide structural connectivity matrices, necessary to perform whole-brain modelling with tools such as The Virtual Brain. In addition, we provide blood-oxygen-level-dependent imaging time series averaged across regions of interest for comparison with simulation results. An average resting state hemodynamic response function for each region of interest, as well as shape maps for each voxel, are also contributed.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Brain/physiology , Brain Mapping/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Computer Simulation , Magnetic Resonance Imaging/methods
13.
Brain Struct Funct ; 227(8): 2713-2730, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36114859

ABSTRACT

The superior longitudinal fasciculus (SLF) is a complex associative tract comprising three distinct subdivisions in the frontoparietal cortex, each of which has its own anatomical connectivity and functional roles. However, many studies on white matter development, hampered by limitations of data quality and tractography methods, treated the SLF as a single entity. The exact anatomical trajectory and developmental status of each sub-bundle of the human SLF in neonates remain poorly understood. Here, we compared the morphological and microstructural characteristics of each branch of the SLF at two ages using diffusion MRI data from 40 healthy neonates and 40 adults. A multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) algorithm was used to ensure the successful separation of the three SLF branches (SLF I, SLF II and SLF III). Then, between-group differences in the diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics were investigated in all the SLF branches. Meanwhile, Mahalanobis distances based on all the diffusion metrics were computed to quantify the maturation of neonatal SLF branches, considering the adult brain as the reference. The SLF branches, excluding SLF II, had similar fibre morphology and connectivity between the neonatal and adult groups. The Mahalanobis distance values further supported the notion of heterogeneous maturation among SLF branches. The greatest Mahalanobis distance was observed in SLF II, possibly indicating that it was the least mature. Our findings provide a new anatomical basis for the early diagnosis and treatment of diseases caused by abnormal neonatal SLF development.


Subject(s)
White Matter , Infant, Newborn , Young Adult , Humans , White Matter/diagnostic imaging , White Matter/anatomy & histology , Diffusion Tensor Imaging/methods , Nerve Net , Diffusion Magnetic Resonance Imaging , Brain/anatomy & histology
14.
Aging (Albany NY) ; 14(18): 7263-7281, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35997651

ABSTRACT

Aging may be associated with motor decline that is attributed to deteriorating white matter microstructure of the corpus callosum (CC), among other brain-related factors. Similar to motor functioning, executive functioning (EF) typically declines during aging, with age-associated changes in EF likewise being linked to altered white matter connectivity in the CC. Given that both motor and executive functions rely on white matter connectivity via the CC, and that bimanual control is thought to rely on EF, the question arises whether EF can at least party account for the proposed link between CC-connectivity and motor control in older adults. To address this, diffusion magnetic resonance imaging data were obtained from 84 older adults. A fiber-specific approach was used to obtain fiber density (FD), fiber cross-section (FC), and a combination of both metrics in eight transcallosal white matter tracts. Motor control was assessed using a bimanual coordination task. EF was determined by a domain-general latent EF-factor extracted from multiple EF tasks, based on a comprehensive test battery. FD of transcallosal prefrontal fibers was associated with cognitive and motor performance. EF partly accounted for the relationship between FD of prefrontal transcallosal pathways and motor control. Our results underscore the multidimensional interrelations between callosal white matter connectivity (especially in prefrontal brain regions), EF across multiple domains, and motor control in the older population. They also highlight the importance of considering EF when investigating brain-motor behavior associations in older adults.


Subject(s)
White Matter , Cognition , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Tensor Imaging/methods , Executive Function , White Matter/diagnostic imaging , White Matter/pathology
15.
Neuroimage Clin ; 34: 103035, 2022.
Article in English | MEDLINE | ID: mdl-35561553

ABSTRACT

INTRODUCTION: Neonatal arterial ischemic stroke (NAIS) has been shown to affect white matter (WM) microstructure beyond the lesion. Here, we employed fixel-based analysis, a technique which allows to model and interpret WM alterations in complex arrangements such as crossing fibers, to further characterize the long-term effects of NAIS on the entire WM outside the primary infarct area. MATERIALS AND METHODS: 32 children (mean age 7.3 years (SD 0.4), 19 male) with middle cerebral artery NAIS (18 left hemisphere, 14 right hemisphere) and 31 healthy controls (mean age 7.7 years (SD 0.6), 16 male) underwent diffusion MRI scans and clinical examination for manual dexterity. Microstructural and macrostructural properties of the WM were investigated in a fixel-based whole-brain analysis, which allows to detect fiber-specific effects. Additionally, tract-averaged fixel metrics in interhemispheric tracts, and their correlation with manual dexterity, were examined. RESULTS: Significantly reduced microstructural properties were identified, located within the parietal and temporal WM of the affected hemisphere, as well as within their interhemispheric connecting tracts. Tract-averaged fixel metrics showed moderate, significant correlation with manual dexterity of the affected hand. No increased fixel metrics or contralesional alterations were observed. DISCUSSION: Our results show that NAIS leads to long-term alterations in WM microstructure distant from the lesion site, both within the parietal and temporal lobes as well as in their interhemispheric connections. The functional significance of these findings is demonstrated by the correlations with manual dexterity. The localization of alterations in structures highly connected to the lesioned areas shift our perception of NAIS from a focal towards a developmental network injury.


Subject(s)
Infant, Newborn, Diseases , Stroke , White Matter , Brain , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Humans , Infant, Newborn , Infant, Newborn, Diseases/pathology , Male , White Matter/pathology
16.
Neuroimage ; 254: 119168, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35367651

ABSTRACT

There have been many studies demonstrating children born very preterm exhibit brain white matter microstructural alterations, which have been related to neurodevelopmental difficulties. These prior studies have often been based on diffusion MRI modelling and analysis techniques, which commonly focussed on white matter microstructural properties in children born very preterm. However, there have been relatively fewer studies investigating the free-water content of the white matter, and also the microstructure and free-water content of the cortical grey matter, in children born very preterm. These biophysical properties of the brain change rapidly during fetal and neonatal brain development, and therefore such properties are likely also adversely affected by very preterm birth. In this study, we investigated the relationship of very preterm birth (<30 weeks' gestation) to both white matter and cortical grey matter microstructure and free-water content in childhood using advanced diffusion MRI analyses. A total of 130 very preterm participants and 45 full-term control participants underwent diffusion MRI at age 13 years. Diffusion tissue signal fractions derived by Single-Shell 3-Tissue Constrained Spherical Deconvolution were used to investigate brain tissue microstructural and free-water composition. The tissue microstructural and free-water composition metrics were analysed using a voxel-based analysis and cortical region-of-interest analysis approach. Very preterm 13-year-olds exhibited reduced white matter microstructural density and increased free-water content across widespread regions of the white matter compared with controls. Additionally, very preterm 13-year-olds exhibited reduced microstructural density and increased free-water content in specific temporal, frontal, occipital and cingulate cortical regions. These brain tissue composition alterations were strongly associated with cerebral white matter abnormalities identified in the neonatal period, and concurrent adverse cognitive and motor outcomes in very preterm children. The findings demonstrate brain microstructural and free-water alterations up to thirteen years from neonatal brain abnormalities in very preterm children that relate to adverse neurodevelopmental outcomes.


Subject(s)
Leukoaraiosis , Premature Birth , White Matter , Adolescent , Brain/diagnostic imaging , Child , Diffusion Tensor Imaging/methods , Female , Humans , Infant, Newborn , Pregnancy , Water , White Matter/diagnostic imaging
17.
Elife ; 112022 01 24.
Article in English | MEDLINE | ID: mdl-35073256

ABSTRACT

Recent studies suggest a framework where white-matter (WM) atrophy plays an important role in fronto-temporal dementia (FTD) pathophysiology. However, these studies often overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities to the disease and the relative contribution of grey-matter (GM) atrophy to this WM model, resulting in a less comprehensive understanding of the relationship between clinical symptoms and pathology. Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were mainly dependent on short-range WM fibre disruption, while damage to long-range WM fibres was preferentially associated to executive dysfunction with the GM contribution to cognition being predominant for local processing. These results support the importance of the disruption of specific WM tracts to the core cognitive symptoms associated with FTD. As large-scale WM tracts, which are particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our findings highlight the importance of controlling for risk factors associated with deep WM disease, such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive dysfunction.


Subject(s)
Cognitive Dysfunction/pathology , Frontotemporal Dementia/pathology , Gray Matter/pathology , White Matter/pathology , Aged , Atrophy , Brain Mapping , Canada , Cross-Sectional Studies , Databases, Factual , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests
18.
Neuroimage Clin ; 33: 102927, 2022.
Article in English | MEDLINE | ID: mdl-34999565

ABSTRACT

OBJECTIVES: To investigate the timeframe prior to symptom onset when cortico-basal ganglia white matter (white matter) loss begins in premanifest Huntington's disease (preHD), and which striatal and thalamic sub-region white matter tracts are most vulnerable. METHODS: We performed fixel-based analysis, which allows resolution of crossing white matter fibres at the voxel level, on diffusion tractography derived white matter tracts of striatal and thalamic sub-regions in two independent cohorts; TrackON-HD, which included 72 preHD (approx. 11 years before disease onset) and 85 controls imaged at three time points over two years; and the HD young adult study (HD-YAS), which included 54 preHD (approx. 25 years before disease onset) and 53 controls, imaged at one time point. Group differences in fibre density and cross section (FDC) were investigated. RESULTS: We found no significant group differences in cortico-basal ganglia sub-region FDC in preHD gene carriers 25 years before onset. In gene carriers 11 years before onset, there were reductions in striatal (limbic and caudal motor) and thalamic (premotor, motor and sensory) FDC at baseline, with no significant change over 2 years. Caudal motor-striatal, pre-motor-thalamic, and primary motor-thalamic FDC at baseline, showed significant correlations with the Unified Huntington's disease rating scale (UHDRS) total motor score (TMS). Limbic cortico-striatal FDC and apathy were also significantly correlated. CONCLUSIONS: Our findings suggest that limbic and motor white matter tracts to the striatum and thalamus are most susceptible to early degeneration in HD but that approximately 25 years from onset, these tracts appear preserved. These findings may have importance in determining the optimum time to initiate future disease modifying therapies in HD.


Subject(s)
Huntington Disease , White Matter , Basal Ganglia/diagnostic imaging , Brain , Diffusion Tensor Imaging , Humans , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , White Matter/diagnostic imaging , Young Adult
19.
Brain Struct Funct ; 227(2): 573-586, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34173870

ABSTRACT

Functional and anatomical hemispheric asymmetries abound in the neural language system, yet the relationship between them remains elusive. One attractive proposal is that structural interhemispheric differences reflect or even drive functional language laterality. However, studies on structure-function couplings either find that left and right language dominant individuals display similar leftward structural asymmetry or yield inconsistent results. The current study aimed to replicate and extend prior work by comparing structural asymmetries between neurologically healthy left-handers with right hemispheric language dominance (N = 24) and typically lateralized left-handed controls (N = 39). Based on structural MRI data, anatomical measures of six 'language-related' perisylvian structures were derived, including the surface area of five gray matter regions with known language functions and the FDC (combined fiber density and fiber-bundle cross-sectional area) of the arcuate fasciculus. Only the surface area of the pars triangularis and the anterior insula differed significantly between participant groups, being on average leftward asymmetric in those with typical dominance, but right lateralized in volunteers with atypical language specialization. However, these findings did not survive multiple testing correction and the asymmetry of these structures demonstrated much inter-individual variability in either subgroup. By integrating our findings with those reported previously we conclude that while some perisylvian anatomical asymmetries may differ subtly between typical and atypical speech dominants at the group level, they serve as poor participant-specific predictors of hemispheric language specialization.


Subject(s)
Language , Speech , Brain Mapping , Cerebral Cortex , Functional Laterality , Humans , Magnetic Resonance Imaging
20.
Article in English | MEDLINE | ID: mdl-34655805

ABSTRACT

BACKGROUND: Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS: Structural and diffusion magnetic resonance imaging data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP: 72; FT: 17) and 13 (VP: 125; FT: 44) years. Internalizing and externalizing symptoms were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS: Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP group and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing symptoms differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS: This study provides insights into the neurobiological basis of emotional and behavioral problems after preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.


Subject(s)
Connectome , Premature Birth , Problem Behavior , Adolescent , Child , Diffusion Magnetic Resonance Imaging , Humans , Infant, Extremely Premature , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...